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In most cases of merohedral twinning, two different twin-

domain orientations are present. A rarer type of merohedral

twinning exists in which there are four different twin-domain

orientations. The former case is referred to as hemihedral

twinning, while the latter more complex type is referred to as

tetartohedral twinning. In tetartohedral twinning, each

observed reflection is the weighted sum of four twin-related

but otherwise independent reflection intensities. The weights

that determine how the true crystallographic intensities

combine to give the observed intensities are described by

four twin fractions representing the fractional volumes of the

four different domain orientations within the specimen. Here,

equations are developed to determine values for the four

tetartohedral twin fractions based on a statistical comparison

of quadruplets of twin-related reflections. Knowledge of the

twin fractions is important in working backwards to obtain

values for the true crystallographic intensities. Use of the

equations is demonstrated with synthetic intensity data

simulated according to given values of the twin fractions.
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1. Introduction

Molecular crystals can suffer from a variety of disorders. A

growth disorder referred to as merohedral twinning is

observed fairly often in crystals of macromolecules such as

proteins and nucleic acids (reviewed in Yeates, 1997; Dauter et

al., 2005; Parsons, 2003). Merohedral twinning typically occurs

in space groups that have lower point symmetries than the

lattices that support them. For example, a crystal in space

group P4 falls on a tetragonal lattice which has 422 symmetry.

In such a case, aberrant crystal growth can produce a specimen

that is comprised of two different domains related to each

other by a rotation that belongs to the lattice symmetry but

not to the crystal space-group symmetry. In the case of P4, this

rotation (or twin operation) could be any one of the twofold-

symmetry axes in the ab plane. Because the differently

oriented twin domains have indistinguishable lattices, the

diffraction patterns they produce are precisely superimposed

on each other. The resulting diffraction pattern therefore

appears unremarkable, yet each of the recorded reflection

intensities is actually a sum of contributions from two twin-

related but crystallographically independent reflections

(Buerger, 1960).

The fractional volume of a crystal specimen comprised by

the differently oriented twin domains is referred to as the twin

fraction. Most cases of merohedral twinning involve just two

possible twin-domain orientations and are referred to as

hemihedral twinning. In hemihedral twinning only one twin

fraction, �, needs to be specified; a twin fraction of 0.30 means



that the specimen is comprised of a 70:30 mixture of the two

twin domains. If the twin fraction is sufficiently close to 1/2, a

situation referred to as ‘perfect twinning’ (as opposed to

‘partial twinning’), the diffraction data set acquires erro-

neously high symmetry. In such cases, the presence of twinning

can usually be detected by its effect on the intensity statistics

of the data set (Rees, 1980; Stanley, 1972). However, it is not

possible to recover the true individual intensities from the

observed intensities in cases of perfect or near-perfect twin-

ning. This is so because an equal mixture of twin-related

reflections produces only a single unique observation, namely

the average of the two underlying crystallographic intensities.

Nonetheless, it is sometimes possible to determine macro-

molecular structures from perfectly twinned specimens. If

reasonable phases can be obtained despite the absence of

accurate structure-factor amplitudes, then a starting model can

be obtained and the effects of twinning on the observed

intensities can be taken into account later during atomic

refinement.

When the hemihedral twin fraction is not near 1/2, then it is

possible in principle to recover the true intensities from the

observed intensities (Grainger, 1969). Because of the unequal

weighting of the separate twin components, the twin-related

observations are not equal to each other and two independent

equations can be written in terms of the two unknown true

intensities. Having an accurate value for the twin fraction is

necessary in order to obtain accurate values for the crystallo-

graphic intensities, which may be vital at early stages of

structure determination. In addition, accurate values for the

twin fractions are required during the later stages (e.g. during

atomic refinement) in order to obtain good agreement

between calculated quantities and observed intensities.

Multiple methods have been developed for estimating the

hemihedral twin fraction �. Twinning affects the diffraction

intensity statistics (Stanley, 1972; Rees, 1980, 1982). In parti-

cular, it causes twin-related observations to be more similar to

each other than would be expected for two independent

reflection intensities and the magnitude of the effect depends

on the degree of twinning (i.e. the twin fraction). Good esti-

mates of the twin fraction can therefore be obtained from

statistical analyses of pairs of twin-related reflections (Britton,

1972; Yeates, 1988; Fisher & Sweet, 1980; Rees, 1982).

In recent years, at least four examples have been reported

of macromolecular crystals that exhibit a higher form of

merohedral twinning referred to as tetartohedral twinning

(Barends et al., 2005; Gayathri et al., 2007; Rosendal et al.,

2004; Anand et al., 2007). In tetartohedral twinning there are

four different orientations for the twin domains and each

observed intensity is therefore the weighted sum of four

independent crystallographic intensities. For macromolecular

crystals, the space groups P3, P31 and P32 are the only ones

that allow true tetartohedral twinning – the underlying hexa-

gonal lattice has 622 rotational symmetry (order 12), whereas

the rotational symmetry of these space group is only of order 3

– but other space groups can allow pseudo-tetartohedral

twinning for fortuitous unit-cell geometries (Anand et al.,

2007). From another perspective, a crystal that supports

tetartohedral twinning is one that could be hemihedrally

twinned in multiple distinct ways. For example, a crystal in

space group P3 can be hemihedrally twinned in ways that

cause the diffraction data to approach either P321, P312 or P6.

Tetartohedral twinning causes a crystal to have the appear-

ance of being twinned in these multiple ways simultaneously.

We are not aware of previous methods for estimating the twin

fractions for tetartohedral twinning. Here, we provide equa-

tions for estimating tetartohedral twin fractions from intensity

data by a statistical comparison of quadruplets of twin-related

reflections. Tests on synthetic data are provided for illustra-

tion. Application of the equations to the structure determi-

nation of a real protein crystal twinned by tetartohedry will be

described in a subsequent paper (Yu et al., in preparation).

2. Results and discussion

2.1. Determination of tetartohedral twin fractions

As noted above, partial tetartohedral twinning gives rise to

partial symmetry about three distinct types of twin operations
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Figure 1
An illustration of a hypothetical tetartohedrally twinned crystal
specimen. The true space group is P3. The figure ‘6’ illustrates a single
molecule. The four differently oriented twin domains are shown in
different colors; in a real crystal these domains might be interspersed
throughout the specimen. The red and green molecules are drawn as
hollow outlines to emphasize their upside-down orientation in the layer.
Three distinct twin operations are present. They constitute symmetry
elements of the hexagonal lattice, but not of the P3 space-group
symmetry. The two twin operations that lie perpendicular to the threefold
axis of symmetry are shown as arrows. The third twin operation is parallel
to the threefold axis and is indicated by the black symbol in the center.
Each of the twin operations exchanges the four twin domains in pairs. For
example, operation A exchanges twin domain 1 with 2 and 3 with 4.
Operation B exchanges domain 1 with 3 and 2 with 4. Operation C
exchanges domain 1 with 4 and 2 with 3. The diffraction patterns from the
four domains overlap, so that each observed intensity is the sum of four
distinct crystallographic intensities weighted according to the twin
fractions (or fractional volumes) of the four domains. With the choice
of unit-cell directions shown, the three twin operators A, B and C would
correspond to exchanging reflection hkl with (h, �h � k, �l), (�h, h + k,
�l) and (�h, �k, l), respectively.



(Fig. 1). Each twin operation interrelates all of the domains so

that the degree to which the diffraction data set obeys any of

the twin operations depends on all four of the twin fractions

simultaneously. As a result, the tetartohedral twin fractions

cannot be adequately described in terms of degrees of partial

twinning about the separate twin operations. Instead, the twin

fractions must be understood according to their combined

effects on quadruplets of twin-related reflections. The

observed intensities of four twin-related reflections depend on

four true intensities as follows:

J1 ¼ �1I1 þ �2I2 þ �3I3 þ �4I4 ð1aÞ

J2 ¼ �2I1 þ �1I2 þ �4I3 þ �3I4 ð1bÞ

J3 ¼ �3I1 þ �4I2 þ �1I3 þ �2I4 ð1cÞ

J4 ¼ �4I1 þ �3I2 þ �2I3 þ �1I4: ð1dÞ

The In indicate true crystallographic intensities and the Jn

represent observed intensities. �m refers to the twin fraction

for domain m; the twin fractions have a range between 0 and 1

and sum to unity. The indices on I and J refer to a particular

twin-related reflection within a quadruplet. For example, if I1

refers to I(hkl), then I2 refers to the reflection related to hkl by

the twin operation that relates twin domains 1 and 2 (Fig. 1).

The assignment of subscripts to twin operations is arbitrary,

but according to the assignments made in Fig. 1, I1, I2, I3 and I4

would refer to I(h, k, l), I(h, �h � k, �l), I(�h, h + k, �l) and

I(�h, �k, l), respectively.

During the later stages of structure determination, for

example after a partial model is in hand, applications of (1)

above should be straightforward. For example, once estimates

of the true crystallographic intensities can be obtained from

the model then the twin fractions in (1) can be treated as

unknowns in a large system of linear equations and good

estimates for the twin fractions can be obtained easily by

linear least squares (Sheldrick & Schneider, 1997). Similarly,

in the later stages of structure determination the calculated

crystallographic intensities, together with the twin fractions,

can be used to obtain relatively unbiased estimates of the true

crystallographic intensities to be used as targets in atomic

refinement. For example, assuming the �m are known, J1 has

been measured and estimates for I2, I3 and I4 can be calculated

from the current model, (1a) can be rearranged to obtain a

value for the crystallographic intensity I1 that is not strongly

biased by the value of I1 calculated from the current model.

This would parallel one of the approaches that has been taken

in the refinement of protein structures from hemihedrally

twinned specimens (Redinbo & Yeates, 1993; Ito et al., 1995).

Such applications of (1) require the use of intensities calcu-

lated from a model structure. However, at the earliest stages of

structure determination this information is usually not avail-

able and obtaining estimates of the tetartohedral twin frac-

tions and the underlying crystallographic intensities is then a

considerably more challenging problem.

The problem we address here is to obtain statistical esti-

mates for the �m based on a large set of observed intensities

(J), knowing only the expected probability distribution for the

true crystallographic intensities (I) but not their individual

values. For the simpler problem of hemihedral twinning,

analyses of the differences between pairs of twin-related

observed intensities lead to expressions for the single twin

fraction � (Yeates, 1988; Rees, 1982). In the case of tetarto-

hedral twinning, taking differences between pairs of observed

intensities (1) leads to complex equations involving all four

true intensities and all four twin fractions. Instead, if properly

chosen sums and differences involving all four twin-related

observed intensities are evaluated, simpler equations are

obtained which can then be rearranged to give statistical

estimates for the twin fractions, as explained below:

ðJ1 þ J2Þ � ðJ3 þ J4Þ ¼ ð�1I1 þ �2I2 þ �3I3 þ �4I4Þ

þ ð�2I1 þ �1I2 þ �4I3 þ �3I4Þ

� ð�3I1 þ �4I2 þ �1I3 þ �2I4Þ

� ð�4I1 þ �3I2 þ �2I3 þ �1I4Þ

¼ I1ð�1 þ �2 � �3 � �4Þ

þ I2ð�1 þ �2 � �3 � �4Þ

� I3ð�1 þ �2 � �3 � �4Þ

� I4ð�1 þ �2 � �3 � �4Þ

¼ ð�1 þ �2 � �3 � �4Þ½ðI1 þ I2Þ � ðI3 þ I4Þ�:

ð2Þ

Then, making use of the condition that �1 + �2 + �3 + �4 = 1,

ðJ1 þ J2Þ � ðJ3 þ J4Þ ¼ ½2ð�1 þ �2Þ � 1�½ðI1 þ I2Þ � ðI3 þ I4Þ�:

ð3Þ

This shows that particular additive and subtractive combina-

tions of four twin-related observed intensities are equal to that

same combination of true intensities multiplied by a factor

that is constant over all reflections and which reflects a sum of

two twin fractions, namely �1 + �2 in the equation above. The

statistical behavior of the quantities (J1 + J2 � J3 � J4) can be

measured, while the quantities (I1 + I2� I3� I4) have a certain

expected statistical behavior (e.g. based on Wilson statistics;

Wilson, 1949). A comparison of the statistical behavior of the

two quantities therefore yields information about the quantity

�1 + �2. Adopting a strategy parallel to that introduced for

hemihedral twinning (Yeates, 1988), we first divide by the sum

of the quartet of twin-related intensities (noting that J1 + J2 +

J3 + J4 = I1 + I2 + I3 + I4); this leads to a simplification with

practical advantages in terms of making resolution-dependent

normalization of intensities unnecessary,

ðJ1 þ J2Þ � ðJ3 þ J4Þ

ðJ1 þ J2 þ J3 þ J4Þ
¼ ½2ð�1 þ �2Þ � 1�

ðI1 þ I2Þ � ðI3 þ I4Þ

ðI1 þ I2 þ I3 þ I4Þ
:

ð4Þ

One way to proceed from this point is to square the equation

above and evaluate the variances of the probability distribu-

tions on both sides. However, simpler results are obtained by

taking absolute values; sign ambiguities (discussed later) arise

in either case. Next, taking the expected values (or the average

over all reflections) on both sides and rearranging, one obtains
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j½2ð�1 þ �2Þ � 1�j ¼

ðJ1 þ J2Þ � ðJ3 þ J4Þ

J1 þ J2 þ J3 þ J4

����
����

� �

ðI1 þ I2Þ � ðI3 þ I4Þ

I1 þ I2 þ I3 þ I4

����
����

� � : ð5Þ

In the context of a different problem (Padilla & Yeates, 2003),

the expected value of the expression in the denominator

above was determined to be 3/8 for acentric reflections, giving

j½2ð�1 þ �2Þ � 1�j ¼
8

3

ðJ1 þ J2Þ � ðJ3 þ J4

J1 þ J2 þ J3 þ J4

����
����

� �
or

½2ð�1 þ �2Þ � 1� ¼ �
8

3

ðJ1 þ J2Þ � ðJ3 þ J4Þ

J1 þ J2 þ J3 þ J4

����
����

� �
: ð6aÞ

By a similar process, related expressions are obtained for the

other pairs of twin fractions,

j½2ð�1 þ �3Þ � 1�j ¼
8

3

ðJ1 þ J3Þ � ðJ2 þ J4Þ

J1 þ J2 þ J3 þ J4

����
����

� �
or

½2ð�1 þ �3Þ � 1� ¼ �
8

3

ðJ1 þ J3Þ � ðJ2 þ J4Þ

J1 þ J2 þ J3 þ J4

����
����

� �
: ð6bÞ

j½2ð�1 þ �4Þ � 1�j ¼
8

3

ðJ1 þ J4Þ � ðJ2 þ J3Þ

J1 þ J2 þ J3 þ J4

����
����

� �
or

½2ð�1 þ �4Þ � 1� ¼ �
8

3

ðJ1 þ J4Þ � ðJ2 þ J3Þ

J1 þ J2 þ J3 þ J4

����
����

� �
: ð6cÞ

Solutions for the twin fractions are obtained by taking

appropriate linear combination of the equations. For example,

one allowable solution is obtained by first choosing positive

values for all three ambiguous signs in (6a)–(6c) and then

adding the three equations together. On the left side, [2(�1 +

�2)� 1] + [2(�1 + �3)� 1] + [2(�1 + �4)� 1] = 4�1� 1. Setting

this equal to the sum of the right-hand sides and rearranging

gives a solution for �1. The other twin fractions are obtained

likewise from other linear combinations of (6a)–(6c). Despite

the lengths of the expressions (below), they are trivial to

compute.

�1 ¼

1þ
8

3

jJ1þJ2�J3�J4jþjJ1þJ3�J2�J4jþjJ1þJ4�J2�J3j

J1þJ2þJ3þJ4

� �� ��
4

ð7aÞ

�2 ¼

1þ
8

3

jJ1þJ2�J3�J4j�jJ1þJ3�J2�J4j�jJ1þJ4�J2�J3j

J1þJ2þJ3þJ4

� �� ��
4

ð7bÞ

�3 ¼

1þ
8

3

�jJ1þJ2�J3�J4jþjJ1þJ3�J2�J4j�jJ1þJ4�J2�J3j

J1þJ2þJ3þJ4

� �� ��
4

ð7cÞ

�4¼

1þ
8

3

�jJ1þJ2�J3�J4j�jJ1þJ3�J2�J4jþjJ1þJ4�J2�J3j

J1þJ2þJ3þJ4

� �� ��
4:

ð7dÞ

The equations above represent just one possible solution. The

ambiguity that arises is best illustrated with a hypothetical

example. If an unknown specimen had (�1, �2, �3, �4) = (0.40,

0.15, 0.20, 0.25), the three values that would appear on the left

side of (6a)–(6c) would be [|2�(0.40 + 0.15) � 1|, |2 � (0.40 +

0.20)� 1|, |2� (0.40 + 0.25)� 1|] = (0.10, 0.20, 0.30). There are

eight sets of twin fractions that will produce this same set of

values in (6a)–(6c) (based on the eight ways of choosing the

ambiguous signs in the three equations). They are

ð�1; �2;�3; �4Þ ¼

ð0:40; 0:15; 0:20; 0:25Þ ð0:10; 0:35; 0:30; 0:25Þ

ð0:15; 0:40; 0:25; 0:20Þ or ð0:35; 0:10; 0:25; 0:30Þ

ð0:20; 0:25; 0:40; 0:15Þ ð0:30; 0:25; 0:10; 0:35Þ

ð0:25; 0:20; 0:15; 0:40Þ ð0:25; 0:30; 0:35; 0:10Þ:

The eight solutions occur in two groups as illustrated above.

One of the groups represents the correct solution and the

other represents a false solution. The four solutions within a

group represent equivalent solutions that arise from a

different arbitrary assignment of domain numbers to the

different domain orientations. There is no distinction

regarding which domain is designated number 1, although the

subsequent domain assignments must be consistent with the

twin operations (i.e. domain 2 is related to domain 1 by the

first twin operation as in Fig. 1). The four equivalent solutions

can be viewed simply as different assignments of domain 1.

Interestingly, the alternate group of four solutions is related to

the first group by subtraction of every element from 1/2.

Evidently, such complementary sets of twin fractions give

observed intensity distributions that are indistinguishable, at

least by the kind of intensity comparisons described here.

There are some instances where one of the solutions would

contain a negative value for one of the twin fractions, which

would rule out that solution. In other cases, such as that illu-

strated above, both are plausible. We show subsequently how

the correct solution can be distinguished.

It should be noted that the treatment presented here

assumes that the quartet of twin-related reflections are all

crystallographically distinct from each other. There are zones

of reflections for which this is not the case; these need to be

discarded in order to avoid systematically overestimating the

degree of twinning. For example, a reflection in the hk0 zone is

equivalent by Friedel’s law (i.e. has the same intensity aside

from anomalous scattering effects) to the �h, �k, 0 reflection,

but that reflection is also one of those related to the given

reflection by a twin operation, namely the twofold twin

operation along the c axis in the P3 space group. Similar

arguments apply to reflections falling in zones that contain the

origin and are perpendicular to any of the real or reciprocal

unit-cell axes in the ab plane. Essentially, any reflection that

would be centric in 622 must be excluded.

Alternatively, we note that a second approach for esti-

mating tetartohedral twin fractions could be developed based

exclusively on the classes of reflections that were discarded in

the previous paragraph. For a reflection in one of the zones

indicated there are not four distinct reflections, but only two,
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so that the four equations in (1) collapse to two. For instance,

if only reflections in the hk0 zone are considered (and Frie-

del’s law is obeyed), then I1 = I4, I2 = I3, J1 = J4 and J2 = J3.

Based on these special zones of reflections, equations for the

twin fractions can be obtained that are somewhat simpler than

those developed here, but that minor advantage is outweighed

by a significant loss in statistical power owing to the lower

number of reflections considered.

Once the twin fractions have been estimated, they can be

used to obtain values for the true crystallographic intensities

(I) from the observed intensities (J). For each quadruplet of

twin-related reflections, (1a)–(1d) give four linear equations in

four unknowns. (1) can be rewritten as a matrix multiplication

relating a vector of four observed intensities to four unknown

crystallographic intensities,

J1

J2

J3

J4

0
BB@

1
CCA ¼

�1 �2 �3 �4

�2 �1 �4 �3

�3 �4 �1 �2

�4 �3 �2 �1

0
BB@

1
CCA

I1

I2

I3

I4

0
BB@

1
CCA or J ¼ TI ð8Þ

and

I ¼ T�1J; ð9Þ

where T is a matrix comprised of the tetartohedral twin frac-

tions. For each quadruplet of twin-related reflections, the In

can be obtained from the Jn by inverting the matrix T,

assuming T is not degenerate. The properties of T determine

whether or not accurate values can be obtained for the true

crystallographic intensities. The eigenvalues of T describe the

extent to which the four-dimensional space of crystallographic

intensities is compressed by the effects of tetartohedral twin-

ning. If any of the eigenvalues approaches zero then the

determinant of T approaches zero and (8) cannot be inverted

without unacceptably large magnifications of the measure-

ment errors associated with the observed intensities. As a

rough approximation, the largest eigenvalue of T�1 may be

taken as a measure of the error amplification that might arise

by detwinning a quadruplet of reflections in the worst-case

scenario (i.e. depending on the particular values of the

intensities involved). Conditions under which T is degenerate

include all cases where the sum of any two twin fractions

equals 1/2. Therefore, detwinning observed intensities is

problematic for any crystal specimen for which the sum of two

twin fractions approaches 1/2.

Finally, it is important to note that estimating tetartohedral

twin fractions by comparing twin-related intensities is subject

to the same caveats that apply to the case of hemihedral

twinning. In order to obtain accurate estimates of the twin

fractions, true crystallographic intensities that are related by

the twin operation(s) must be statistically independent; this

assumption was implicit in the substitution of the denominator

of (5) by the quantity 3/8. The presence of noncrystallographic

symmetry (NCS) can cause the assumption of statistical

independence to be false, particularly for reflections in the

lower resolution range. In practice, NCS often interferes with

analyses of twinning, as twinning is frequently associated with

an NCS axis that is nearly coincident with a potential twin

operation; this is true of all four of the previously reported

cases of tetartohedral twinning. Cautionary steps should

therefore be taken, in hemihedral as well as tetartohedral

cases, in order to avoid confusing NCS with twinning. Firstly,

NCS can lead to similarity between pairs (or quadruplets) of

true intensities related by potential twinning, but this effect

tends to diminish at higher resolution (i.e. smaller Bragg

spacing), while the effects of twinning do not. Estimates of

twin fractions should therefore be made on the basis of

reflections in increasing resolution ranges. In a case where

NCS is present but twinning is not, the estimated twin frac-

tions should typically decrease towards zero as the resolution

range increases. Secondly, if twinning is indeed present and the
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Figure 2
An illustration of the cumulative intensity statistics for the simulated data
used as a test case. (a) The intensity distribution for the tetartohedrally
twinned data is shown by the diamond-shaped data points. The twin
fractions used in simulating the tetartohedral twinning were (0.40, 0.30,
0.25, 0.05). The theoretical curve expected for ordinary (untwinned
acentric) data according to Wilson statistics is shown as a thin solid curve.
The curve for the synthetic data is shifted in the direction expected for
twinning. (b) A single ambiguity arises in the determination of twin
fractions from the statistical method presented here; the correct solution
(0.40, 0.30, 0.25, 0.05) and a false solution (0.10, 0.20, 0.25, 0.45) are
identified as possibilities. The intensity distributions are shown for data
detwinned according to the two potential solutions. The data obtained
under the correct solution are shown as square data points, while the data
obtained under the false solution are shown as triangular data points. As
in (a), the theoretical curve for ordinary data is shown as a thin solid
curve. The incorrect choice for the twin fractions gives a significant
number of negative intensities and a distribution that does not obey
Wilson statistics.



twin fractions are significant, then this should be evident in

analyses of overall intensity statistics (Padilla & Yeates, 2003;

Stanley, 1972; Rees, 1980), which do not rely on comparisons

of potentially twin-related reflections and which are therefore

not affected severely by NCS. These steps are important to

avoid systematic error or misinterpretation of twinning.

Furthermore, random errors in measured intensities also lead

to errors in estimating twin fractions. Mathematical treatments

of errors have been developed for the case of hemihedral

twinning (Lunin et al., 2007; Rees, 1982). This has not been

attempted here for the case of tetartohedral twinning, but it

remains true that measurement errors tend to increase the

differences between twin-related measurements. This leads to

a slight underestimation of the amount of twinning present.

2.2. Tests using synthetic intensity data

Synthetic intensity data were generated in order to test the

equations above. 10 000 quadruplets of twin-related reflection

intensities were generated according to an exponential prob-

ability distribution as expected for acentric reflections

according to Wilson statistics. These were then mixed together

to simulate tetartohedral twinning according to (1) using the

following test values for the twin fractions: (�1, �2, �3, �4) =

(0.40, 0.30, 0.25, 0.05). In order to simulate the effects of small

measurement errors, an error term, uniformly distributed from

�5% to +5%, was added to each simulated observed intensity

to give an average error of 2.5%. These values were then used

in (7) to obtain estimates of the twin fractions. The following

estimates were obtained: (�1, �2, �3, �4) = (0.400, 0.301, 0.251,

0.048) [plus three equivalent permutations (0.301, 0.400, 0.048,

0.251), (0.251, 0.048, 0.400, 0.301) and (0.048, 0.251, 0.301,

0.400)] or (�1, �2, �3, �4) = (0.100, 0.199, 0.249, 0.452) [plus

three equivalent permutations (0.199, 0.100, 0.452, 0.249),

(0.249, 0.452, 0.100, 0.199) and (0.452, 0.249, 0.199, 0.100)].

One of the solutions from the first set listed matches the

correct values, with small deviations arising from the errors

that were introduced into the twinned intensities.

How can the correct group of solutions be discriminated

from the incorrect group? Equation (9) can be used to

calculate values for the true crystallographic intensities from

the observed intensities. The correct solution set for the twin

fractions should generate a set of In that obey ordinary (i.e.

untwinned) Wilson statistics, while the incorrect set of twin

fractions should not. This assertion was tested by calculating

values for the In under the two groups of solutions; only one

solution from each group needs to be evaluated because

equivalent solutions within one group give the same intensities

permuted according to the twin operations and so have the

same intensity distributions. The cumulative intensity distri-

butions under the two possible solutions are shown in Fig.

2(b). Note that the incorrect set of twin fractions gives a

distribution that is inconsistent with Wilson statistics and that

in particular a significant number of negative calculated

intensities are obtained. As expected, the correct solution

gives a set of calculated crystallographic intensities whose

distribution matches Wilson statistics.

A final issue is whether accurate values for the true inten-

sities can be extracted from the twinned observations. Using

the same simulated data as above, the agreement was tested

between the crystallographic intensities obtained using (9)

(based on the estimated twin-fraction values above) and the

original values of the synthetic crystallographic intensities

from which the twinned values (Jn) were computed. The

average error in the extracted intensities, evaluated in the

form of an R factor, was 13%. This is approximately five times

larger than the average error introduced into the simulated

observed intensities, which was 2.5%. This illustrates the

magnification of errors expected by detwinning: the magni-

tudes of the eigenvalues of T�1 obtained from the twin frac-

tions employed in this simulated test case were (1.0, 2.5, 3.3

and 10).

3. Conclusions

Tetartohedral twinning presents a particularly complex chal-

lenge for interpreting observed intensities in terms of true

crystallographic intensities. This is particularly true at the

earliest stages of a crystallographic investigation, before

additional data (such as calculated intensities from a partial

model) are available. Four twin fractions (which sum to one)

govern the behavior of the observed intensities. When only the

observed tetartohedrally twinned intensities are available,

values for the twin fractions must be estimated by statistical

methods. Equations are described here for estimating tetar-

tohedral twin fractions based on an analysis of simple sums

and differences between quadruplets of twin-related observed

reflection intensities. A test case using synthetic intensity data

shows that correct values for the twin fractions can be

obtained and that those values are not strongly affected by

random measurement errors. A single ambiguity in the twin-

fraction values arises in the statistical analysis and an

approach for resolving the ambiguity is illustrated.

Based on the estimated twin fractions, the observed

(tetartohedrally twinned) intensities can be effectively

detwinned to yield true crystallographic intensities. However,

the detwinning process can significantly magnify the errors

inherent in the observed data. The extent of this error

magnification is discussed in terms of the twin-fraction values.

In some cases it should be possible to obtain reasonably

accurate values for the true crystallographic intensities by

detwinning, while in other cases this will not be possible.

Efforts to determine atomic structures in such cases will have

to rely on the use of twinned intensities in crystallographic

calculations. Knowledge of the twin fractions and an under-

standing of the underlying twinning equations will also be

important in these calculations.
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